Share:


INTEGRATED MULTI-HAZARD ASSESSMENT AND RENEWABLE ENERGY POTENTIAL ANALYSIS FOR SMART URBAN PLANNING IN THOOTHUKUDI COASTAL CITY USING GIS AND MULTI-CRITERIA DECISION ANALYSIS

    C. Antony Zacharias Grace, John Prince Soundranayagam, A. Antony Alosanai Promilton, V. Stephen Pitchaimani, Ernest Amita Roy

Abstract

Coastal urban areas face increasing environmental challenges requiring integrated planning approaches that balance development needs with climate resilience. This study developed a comprehensive GIS-based framework for delineating smart planning zones by integrating multi-hazard vulnerability assessment with renewable energy potential mapping in Thoothukudi Municipal Corporation, India. The methodology employed flood vulnerability, cyclone exposure, urban heat island intensity and solar energy potential assessments for integrated smart urban planning. Analytical Hierarchy Process determined component weights with flood vulnerability (51%) and cyclone vulnerability (38%) receiving highest priority. Three hierarchical indices were developed: compound vulnerability, development opportunity and urban resilience, which were integrated to establish five smart planning zones ranging from no development to priority development categories. Results revealed that 78.88% of the study area exhibits moderate vulnerability, while preferred development zones encompass 34.63% of the region concentrated in southwestern areas with favourable elevation and solar conditions. Restricted development zones cover 32.46% of the area primarily in the central urban core and coastal industrial areas. The framework successfully identified strategic development corridors extending from high-resilience southwestern zones toward moderate-resilience areas providing evidence-based guidance for sustainable urban expansion. The integrated methodology offers a transferable approach for coastal cities to implement climate-informed planning that simultaneously addresses disaster risk reduction and sustainable development objectives. The smart planning zone framework provides municipal authorities with actionable spatial guidance for implementing adaptive management strategies and renewable energy development while maintaining environmental safety standards.

Keyword : Coastal Urban Planning, Multi-hazard Vulnerability, Smart Planning Zones, Renewable Energy Potential, Climate Resilience, Sustainable Development

Published in Issue
June 15, 2025
Abstract Views
02
PDF Downloads
03
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References


• Abdalla, R., & Abdalla, R. (2024). Framework for Assessing the Impacts of Climate Change on Urban Agglomerations: A GIS and Remote Sensing Perspective. Urban Agglomeration - Extracting Lessons for Sustainable Development [Working Title]. https://doi.org/10.5772/INTECHOPEN.1004284 • Adebayo, W. G. (2024). Resilience in the face of ecological challenges: Strategies for integrating environmental considerations into social policy planning in Africa. Sustainable Development, 33(1), 203–220. https://doi.org/10.1002/SD.3113;WGROUP:STRING:PUBLICATION • Barcellos-Paula, L., Castro-Rezende, A., & Gil-Lafuente, A. M. (2025). Understanding Urban Resilience and SDGs: A New Approach in Decision-Making for Sustainable Cities. Journal of Public Affairs, 25(1), e70007. https://doi.org/10.1002/PA.70007 • Bendoni, M., Caparrini, F., Cucco, A., Taddei, S., Anton, I., Paranunzio, R., Mocali, R., Perna, M., Sacco, M., Vitale, G., Corongiu, M., Ortolani, A., Gharbia, S., & Brandini, C. (2025). Multiscale Modeling for Coastal Cities: Addressing Climate Change Impacts on Flood Events at Urban-Scale. https://doi.org/10.5194/EGUSPHERE-2025-270 • Blakely, E. (2022). Urban planning for climate change. https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/united-states/gulf-coast/louisiana/Blakely.-2007.-New-Orleans-Urban-Planning-for-CC.pdf • Burayu, D. G., Karuppannan, S., & Shuniye, G. (2023). Identifying flood vulnerable and risk areas using the integration of analytical hierarchy process (AHP), GIS, and remote sensing: A case study of southern Oromia region. Urban Climate, 51, 101640. https://doi.org/10.1016/J.UCLIM.2023.101640 • Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/IPCC/AR6-9789291691647 • Cissé, C. (2025). Urbanization in Sahelian Cities: A Nexus of Climate Change, Health Disparities, and Sustainable Planning. Https://Doi.Org/10.3138/Jccpe-2024-0001, 3(2/3), 410–426. https://doi.org/10.3138/JCCPE-2024-0001 • Das, S., & Ghosh, T. (2024). Identifying the Gaps in Cyclone Vulnerability Mitigation in the Indian Sundarban Using AHP Based Multi Criteria Decision Analysis (MCDA) and GIS Techniques: Tool for the Policy Makers. Earth Systems and Environment, 1–19. https://doi.org/10.1007/S41748-024-00486-X/METRICS • Das, T., Talukdar, S., Shahfahad, Baig, M. R. I., Hang, H. T., Siddiqui, A. M., & Rahman, A. (2024). Assessing vulnerability to cyclones in coastal Odisha using fuzzy logic integrated AHP: towards effective risk management. Spatial Information Research, 32(3), 277–295. https://doi.org/10.1007/S41324-023-00556-8/METRICS • Dharmarathne, G., Waduge, A. O., Bogahawaththa, M., Rathnayake, U., & Meddage, D. P. P. (2024). Adapting cities to the surge: A comprehensive review of climate-induced urban flooding. Results in Engineering, 22, 102123. https://doi.org/10.1016/J.RINENG.2024.102123 • Drakes, O., & Tate, E. (2022). Social vulnerability in a multi-hazard context: a systematic review. Environmental Research Letters, 17(3), 033001. https://doi.org/10.1088/1748-9326/AC5140 • Ezimand, K., Aghighi, H., Ashourloo, D., & Shakiba, A. (2024). The analysis of the spatio-temporal changes and prediction of built-up lands and urban heat islands using multi-temporal satellite imagery. Sustainable Cities and Society, 103, 105231. https://doi.org/10.1016/J.SCS.2024.105231 • Faqe Ibrahim, G. R., Mahmood, K. W., Mahmood, M., & Rasul, A. (2024). Enhancing Solar Power Plant Location Selection Through Multicriteria Decision-Making with the Analytic Hierarchy Process. Annals of the American Association of Geographers. https://doi.org/10.1080/24694452.2024.2373795 • Gomes, A., Islam, N. M., & Karim, M. R. (2025). Data-Driven Environmental Risk Management and Sustainability Analytics (Second Edition). Journal of Computer Science and Technology Studies, 7(3), 812–825. https://doi.org/10.32996/JCSTS.2025.7.3.89 • Hasan, I., Faruk, M. O., Katha, Z. T., Goni, M. O., Islam, M. S., Chakraborty, T. R., Faysal Sowrav, S. F., & Hossain, M. S. (2024). Geo-spatial based cyclone shelter suitability assessment using analytical hierarchy process (AHP) in the coastal region of Bangladesh. Heliyon, 10(21), e39831. https://doi.org/10.1016/J.HELIYON.2024.E39831 • Imam, A. A., Abusorrah, A. M., & Marzband, M. (2024). Potential of Concentrated Solar Power in the Western Region of Saudi Arabia: A GIS-Based Land Suitability Analysis and Techno-Economic Feasibility Assessment. IEEE Access, 12, 1570–1598. https://doi.org/10.1109/ACCESS.2023.3344752 • Kader, Z., Islam, M. R., Aziz, M. T., Hossain, M. M., Islam, M. R., Miah, M., & Jaafar, W. Z. W. (2024). GIS and AHP-based flood susceptibility mapping: a case study of Bangladesh. Sustainable Water Resources Management, 10(5), 1–18. https://doi.org/10.1007/S40899-024-01150-Y/METRICS • Kapucu, N., Ge, Y., Rott, E., & Isgandar, H. (2024). Urban resilience: Multidimensional perspectives, challenges and prospects for future research. Urban Governance, 4(3), 162–179. https://doi.org/10.1016/J.UGJ.2024.09.003 • Kasniza Jumari, N. A. S., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., Sherif, M., & Elshafie, A. (2023). Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18424 • Mariano, C., & Marino, M. (2022). Urban Planning for Climate Change: A Toolkit of Actions for an Integrated Strategy of Adaptation to Heavy Rains, River Floods, and Sea Level Rise. Urban Science 2022, Vol. 6, Page 63, 6(3), 63. https://doi.org/10.3390/URBANSCI6030063 • McMichael, C., Dasgupta, S., Ayeb-Karlsson, S., & Kelman, I. (2020). A review of estimating population exposure to sea-level rise and the relevance for migration. Environmental Research Letters, 15(12), 123005. https://doi.org/10.1088/1748-9326/ABB398 • Mehmood, R., Yigitcanlar, T., & Corchado, J. M. (2024). Smart Technologies for Sustainable Urban and Regional Development. Sustainability 2024, Vol. 16, Page 1171, 16(3), 1171. https://doi.org/10.3390/SU16031171 • Metternicht, G. (2018). Land Use and Spatial Planning. https://doi.org/10.1007/978-3-319-71861-3 • Mohammadi, S., De Angeli, S., Boni, G., Pirlone, F., & Cattari, S. (2024). Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards. Natural Hazards and Earth System Sciences, 24(1), 79–107. https://doi.org/10.5194/NHESS-24-79-2024 • Mumtaz, M., Jahanzaib, S. H., Hussain, W., Khan, S., Youssef, Y. M., Qaysi, S., Abdelnabi, A., Alarifi, N., & Abd-Elmaboud, M. E. (2025). Synergy of Remote Sensing and Geospatial Technologies to Advance Sustainable Development Goals for Future Coastal Urbanization and Environmental Challenges in a Riverine Megacity. ISPRS International Journal of Geo-Information, 14(1), 30. https://doi.org/10.3390/IJGI14010030/S1 • Rezvani, S. M. H. S., Falcão, M. J., Komljenovic, D., & de Almeida, N. M. (2023a). A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Applied Sciences 2023, Vol. 13, Page 2223, 13(4), 2223. https://doi.org/10.3390/APP13042223 • Rezvani, S. M. H. S., Falcão, M. J., Komljenovic, D., & de Almeida, N. M. (2023b). A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Applied Sciences 2023, Vol. 13, Page 2223, 13(4), 2223. https://doi.org/10.3390/APP13042223 • Romshoo, S. A., Amin, M., & Qazi, A. us S. (2024). Opportunity mapping to inform rural development planning at village level using geospatial techniques. Environment, Development and Sustainability, 1–32. https://doi.org/10.1007/S10668-024-05822-9/METRICS • Saaty, T. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation: Thomas L. SAATY McGraw-Hill, New York, 1980, xiii. European Journal of Operational Research, 9(1), 97–98. https://search.worldcat.org/title/5352839 • Saranya, A., Sivakumar, V., Satheeshkumar, S., & Logeshkumaran, A. (2024). Assessment of Flood Risk in the High Rainfall Coastal Area of Cuddalore Taluk, Southeast India, Using GIS-Based Analytic Hierarchy Process Techniques. Journal of the Indian Society of Remote Sensing, 53(1), 67–80. https://doi.org/10.1007/S12524-024-01998-9/METRICS • Sharma, M., & Khan, S. (2023). Coastal Resilience and Urbanization Challenges in India. International Handbook of Disaster Research, 1–16. https://doi.org/10.1007/978-981-16-8800-3_27-1 • Shrestha, A., Howland, G. J., Chini -, C. M., Berlin Rubin, N., Rose Garfin, D., Wong-Parodi -, G., Ikonomova, M., & MacAskill, K. (2023). Climate change hazards, physical infrastructure systems, and public health pathways. Environmental Research: Infrastructure and Sustainability, 3(4), 045001. https://doi.org/10.1088/2634-4505/ACFABD • Subramanian, A., Nagarajan, A. M., Vinod, S., Chakraborty, S., Sivagami, K., Theodore, T., Sathyanarayanan, S. S., Tamizhdurai, P., & Mangesh, V. L. (2023). Long-term impacts of climate change on coastal and transitional eco-systems in India: an overview of its current status, future projections, solutions, and policies. RSC Advances, 13(18), 12204–12228. https://doi.org/10.1039/D2RA07448F • Ukoba, K., Yoro, K. O., Eterigho-Ikelegbe, O., Ibegbulam, C., & Jen, T. C. (2024). Adaptation of solar energy in the Global South: Prospects, challenges and opportunities. Heliyon, 10(7), e28009. https://doi.org/10.1016/J.HELIYON.2024.E28009 • Vinayachandran, P. N., Seng, D. C., & Schmid, F. A. (2022). Climate Change and Coastal Systems. Blue Economy: An Ocean Science Perspective, 341–377. https://doi.org/10.1007/978-981-19-5065-0_12 • Wang, D., Xu, P. Y., An, B. W., & Guo, Q. P. (2024). Urban green infrastructure: bridging biodiversity conservation and sustainable urban development through adaptive management approach. Frontiers in Ecology and Evolution, 12, 1440477. https://doi.org/10.3389/FEVO.2024.1440477/BIBTEX • Wang, J., Wang, J., & Zhang, J. (2023). Spatial distribution characteristics of natural ecological resilience in China. Journal of Environmental Management, 342, 118133. https://doi.org/10.1016/J.JENVMAN.2023.118133 • Wu, H., Zhang, M., He, Y., Chen, P., Pasquier, U., Hu, H., & Wen, J. (2025). Scenario-based flood adaption of a fast-developing delta city: Modeling the extreme compound flood adaptations for shanghai. International Journal of Disaster Risk Reduction, 117, 105207. https://doi.org/10.1016/J.IJDRR.2025.105207 • Xue, C., Yang, G., Ma, X., Zhen, J., Sun, H., Zhang, X., Ruan, X., Jiang, H., & Shou, W. (2024). Mapping Compound Flooding Risks for Urban Resilience in Coastal Zones: A Comprehensive Methodological Review. Remote Sensing 2024, Vol. 16, Page 350, 16(2), 350. https://doi.org/10.3390/RS16020350 • Yu, D., & Fang, C. (2023). Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sensing 2023, Vol. 15, Page 1307, 15(5), 1307. https://doi.org/10.3390/RS15051307 • Zhao, C., Pan, Y., Wu, H., & Zhu, Y. (2024). Quantifying the contribution of industrial zones to urban heat islands: Relevance and direct impact. Environmental Research, 240, 117594. https://doi.org/10.1016/J.ENVRES.2023.117594