HARNESSING NATURE'S WISDOM: THE INTERSECTION OF SWARM INTELLIGENCE AND IOT
Abstract
The integration of SI with the Internet of Things promises revolutionary advantages in different fields. Inspired by decentralized and self-organizing behaviors in biological systems, ACO and PSO SI algorithms may optimize resource management in IoT networks, raise energy efficiency, and even improve security. This paper addresses the question of how SI can be used to overcome critical challenges within IoT, particularly within WSN, healthcare, smart cities, and industrial applications, in order to gain adaptability, scalability, and autonomous performance in real time with system behavior redefinition toward an untangling future of connected technology. This research, thus, will also point out other applications in agriculture, traffic management, and energy grids while discussing how the amalgamation of SI and IoT brings its ethical and security concerns.
Keyword : Swarm Intelligence, Internet of Things, Healthcare, ACO, Smart Cities

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abualigah, L., Falcone, D., Forestiero, A. J. C. I., & Neuroscience. (2023). Swarm intelligence to face IoT challenges. 2023(1), 4254194. Alazab, M., Soman, K., Srinivasan, S., Venkatraman, S., & Pham, V. Q. J. A. P. (2023). Deep learning for cyber security applications: A comprehensive survey. Alex, C., & Vijaychandra, A. (2016). Autonomous cloud based drone system for disaster response and mitigation. 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), Ali, A., Ataei Kachouei, M., & Kaushik, A. (2023). Internet of Things‐Enabled Food and Plant Sensors to Empower Sustainability. Ali, A., Ming, Y., Chakraborty, S., & Iram, S. J. F. i. (2017). A comprehensive survey on real-time applications of WSN. 9(4), 77. Alterazi, H. A., Kshirsagar, P. R., Manoharan, H., Selvarajan, S., Alhebaishi, N., Srivastava, G., & Lin, J. C.-W. J. S. (2022). Prevention of cyber security with the internet of things using particle swarm optimization. 22(16), 6117. Alyasseri, Z. A. A., Alomari, O. A., Al-Betar, M. A., Makhadmeh, S. N., Doush, I. A., Awadallah, M. A.,…Applications. (2022). Recent advances of bat-inspired algorithm, its versions and applications. 34(19), 16387-16422. Antoniou, P. (2012). Nature-inspired congestion control and avoidance in wireless sensor networks. Arif, S., Khan, M. A., Rehman, S. U., Kabir, M. A., & Imran, M. J. I. A. (2020). Investigating smart home security: Is blockchain the answer? , 8, 117802-117816. Arora, S., & Singh, S. J. I. J. o. C. A. (2013). The firefly optimization algorithm: convergence analysis and parameter selection. 69(3). Arumugam, V. J. Q. (2023). A Smart Vehicle Charging Station Identification Based On IOT with Hybrid Grey Wolf-Bat Optimization Enriched On Artificial Neural Networks Recognition Methods. Asaamoning, G., Mendes, P., Rosário, D., & Cerqueira, E. J. S. (2021). Drone swarms as networked control systems by integration of networking and computing. 21(8), 2642. Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R.,…Basheer, S. J. M. I. S. (2022). Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. 2022(1), 7632892. Berghout, T., Benbouzid, M., & Muyeen, S. J. I. J. o. C. I. P. (2022). Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects. 38, 100547. Bharathi, R., Abirami, T., Dhanasekaran, S., Gupta, D., Khanna, A., Elhoseny, M.,…Systems. (2020). Energy efficient clustering with disease diagnosis model for IoT based sustainable healthcare systems. 28, 100453. Bharathidasan, A., & Ponduru, V. A. S. (2002). Sensor networks: An overview. IEEE INFOCOM, Bhardwaj, T., & Sharma, S. C. (2015). Internet of Things: route search optimization applying ant colony algorithm and theory of computation. Proceedings of Fourth International Conference on Soft Computing for Problem Solving: SocProS 2014, Volume 1, Bhuvaneshwari, K., Venkatachalam, K., Hubálovský, S., Trojovský, P., Prabu, P. J. C., Materials, & Continua. (2022). Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier. 70(3). Boykova, M., Ilina, I., & Salazkin, M. J. Ф. (2016). The Smart City approach as a response to emerging challenges for urban development. 10(3 (eng)), 65-75. Brezočnik, L., Fister Jr, I., & Podgorelec, V. J. A. S. (2018). Swarm intelligence algorithms for feature selection: a review. 8(9), 1521. Bsaybes, S., Quilliot, A., & Wagler, A. K. J. R.-O. R. (2019). Fleet management for autonomous vehicles: Online PDP under special constraints. 53(3), 1007-1031. Chandraprabha, M., & Dhanaraj, R. K. (2023). Deep Learning Based Speculative Analysis of Diverse Nature Inspired Optimization Algorithms in Agriculture. 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), Chaudhari, B. J. I. J. o. P. E. (2022). Role of swarm intelligence algorithms on secured wireless network sensor environment-A comprehensive review. 18(2), 92. Chen, W., Zhu, J., Liu, J., Guo, H. J. J. o. N., & Applications, C. (2024). A fast coordination approach for large-scale drone swarm. 221, 103769. Darvishpoor, S., Darvishpour, A., Escarcega, M., & Hassanalian, M. J. D. (2023). Nature-inspired algorithms from oceans to space: A comprehensive review of heuristic and meta-heuristic optimization algorithms and their potential applications in drones. 7(7), 427. Das, S., Biswas, A., Dasgupta, S., & Abraham, A. J. F. o. c. i. v. G. o. (2009). Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. 23-55. De Souza, A. M., Yokoyama, R. S., Maia, G., Loureiro, A., & Villas, L. (2016). Real-time path planning to prevent traffic jam through an intelligent transportation system. 2016 IEEE symposium on computers and communication (ISCC), Deif, D. S., & Gadallah, Y. J. I. A. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. 5, 10744-10756. DEMRI, M., RAHMOUN, A., OMARI, M. J. I. J. o. C., & Systems, D. (2023). Energy efficient clustering in wireless sensors network using adaptive levy-flight firefly algorithm. Dimara, A., Vasilopoulos, V.-G., Papaioannou, A., Angelis, S., Kotis, K., Anagnostopoulos, C.-N.,…Tzovaras, D. J. A. S. (2022). Self-healing of semantically interoperable smart and prescriptive edge devices in IoT. 12(22), 11650. Djahel, S., Doolan, R., Muntean, G.-M., Murphy, J. J. I. C. S., & Tutorials. (2014). A communications-oriented perspective on traffic management systems for smart cities: Challenges and innovative approaches. 17(1), 125-151. Dorigo, M., & Stützle, T. (2019). Ant colony optimization: overview and recent advances. Springer. Dragoi, E. N., & Dafinescu, V. J. M. (2021). Review of metaheuristics inspired from the animal kingdom. 9(18), 2335. Duan, H., & Luo, Q. J. I. J. o. B.-I. C. (2015). New progresses in swarm intelligence–based computation. 7(1), 26-35. Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Elsevier. Edwards, S. J. (2004). Swarming and the Future of Warfare. The RAND Graduate School. Elfatih, N. M., Ali, E. S., & Saeed, R. A. (2023). Navigation and Trajectory Planning Techniques for Unmanned Aerial Vehicles Swarm. In Artificial Intelligence for Robotics and Autonomous Systems Applications (pp. 369-404). Springer. Farahani, B., Firouzi, F., Chakrabarty, K. J. I. I. o. T. F. D. t. F., & Cloud. (2020). Healthcare iot. 515-545. Gad, A. G. J. A. o. c. m. i. e. (2022). Particle swarm optimization algorithm and its applications: a systematic review. 29(5), 2531-2561. Gandomi, A. H., Yang, X.-S., & Alavi, A. H. J. E. w. c. (2013). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. 29, 17-35. Gill, S. S., Tuli, S., Xu, M., Singh, I., Singh, K. V., Lindsay, D.,…Jain, U. J. I. o. T. (2019). Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. 8, 100118. Gulati, K., Boddu, R. S. K., Kapila, D., Bangare, S. L., Chandnani, N., & Saravanan, G. J. M. T. P. (2022). A review paper on wireless sensor network techniques in Internet of Things (IoT). 51, 161-165. Haddad, O. B., Afshar, A., & Mariño, M. A. J. w. r. m. (2006). Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. 20, 661-680. Hasbach, J. D., & Bennewitz, M. J. A. B. (2022). The design of self-organizing human–swarm intelligence. 30(4), 361-386. Hassan, K. M., Abdo, A., & Yakoub, A. J. I. A. (2022). Enhancement of health care services based on cloud computing in IOT environment using hybrid swarm intelligence. 10, 105877-105886. Hassan, W. H. J. C. n. (2019). Current research on Internet of Things (IoT) security: A survey. 148, 283-294. Holzinger, A., Saranti, A., Angerschmid, A., Retzlaff, C. O., Gronauer, A., Pejakovic, V.,…Stampfer, K. J. S. (2022). Digital transformation in smart farm and forest operations needs human-centered AI: challenges and future directions. 22(8), 3043. Huang, M., Liu, Z., Tao, Y. J. S. M. P., & Theory. (2020). Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. 102, 101981. Jabbarpour, M. R., Malakooti, H., Noor, R. M., Anuar, N. B., & Khamis, N. J. I. J. o. B.-I. C. (2014). Ant colony optimisation for vehicle traffic systems: applications and challenges. 6(1), 32-56. Jagadeeswari, V., Subramaniyaswamy, V., Logesh, R. t. a., Vijayakumar, V. J. H. i. s., & systems. (2018). A study on medical Internet of Things and Big Data in personalized healthcare system. 6(1), 14. Jaladi, A. R., Khithani, K., Pawar, P., Malvi, K., & Sahoo, G. J. I. R. J. E. T. (2017). Environmental monitoring using wireless sensor networks (WSN) based on IOT. 4(1), 1371-1378. Janga Reddy, M., & Nagesh Kumar, D. J. h. o. (2020). Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: a state-of-the-art review. 3(1), 135-188. Karaboga, D. J. s. (2010). Artificial bee colony algorithm. 5(3), 6915. Ke, W.-C., Liu, B.-H., & Tsai, M.-J. J. I. T. o. C. (2007). Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. 56(5), 710-715. Khan, Y., Su’ud, M. B. M., Alam, M. M., Ahmad, S. F., Ahmad, A. Y. B., & Khan, N. J. S. (2022). Application of internet of things (iot) in sustainable supply chain management. 15(1), 694. Kilinc, H. C., Haznedar, B., Katipoğlu, O. M., & Ozkan, F. J. A. G. (2024). A comparative study of daily streamflow forecasting using firefly, artificial bee colony, and genetic algorithm-based artificial neural network. 1-21. Krishnanand, K., Ghose, D. J. M., & Systems, G. (2006). Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. 2(3), 209-222. Labiod, H. (2010). Wireless ad hoc and Sensor Networks (Vol. 6). John Wiley & Sons. Lampropoulos, G., Siakas, K., & Anastasiadis, T. J. p. (2018). Internet of things (IoT) in industry: Contemporary application domains, innovative technologies and intelligent manufacturing. 6(7). Liu, Y., & Passino, K. M. J. D. o. e. e., the Ohio State University. (2000). Swarm intelligence: Literature overview. Ma, C., Zhu, J., Liu, M., Zhao, H., Liu, N., & Zou, X. J. I. I. o. T. J. (2021). Parking edge computing: Parked-vehicle-assisted task offloading for urban VANETs. 8(11), 9344-9358. Maaroof, B. B., Rashid, T. A., Abdulla, J. M., Hassan, B. A., Alsadoon, A., Mohammadi, M.,…Mirjalili, S. J. A. o. C. M. i. E. (2022). Current studies and applications of shuffled frog leaping algorithm: a review. 29(5), 3459-3474. Mahmoud, H. H., Al-Shammari, M. K. M., Hameed, I. M., Al_Barazanchi, I. I., Sekhar, R., Shah, P.,…Systems. (2024). Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach. 17(3). Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., Ni, W. J. I. c. s., & tutorials. (2018). Anatomy of threats to the internet of things. 21(2), 1636-1675. Malashin, I. P., Tynchenko, V. S., Masich, I. S., Sukhanov, D. A., Kudryavtsev, A. A., Ageev, D. A.,…Borodulin, A. S. (2024). Two-Stage Genetic Algorhitm for Optimization Logistics Network for Groupage Delivery. Mareli, M., Twala, B. J. A. c., & informatics. (2018). An adaptive Cuckoo search algorithm for optimisation. 14(2), 107-115. Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. J. I. I. o. T. J. (2019). IoT: Internet of threats? A survey of practical security vulnerabilities in real IoT devices. 6(5), 8182-8201. Mogadem, M. M., Li, Y., & Meheretie, D. L. J. C. C. (2022). A survey on internet of energy security: related fields, challenges, threats and emerging technologies. 1-37. Nascimento, N. M. J. D. P.-R. (2015). FIoT: An agent-based framework for selfadaptive and self-organizing internet of things applications. Nguyen, H. H., Mirza, F., Naeem, M. A., & Nguyen, M. (2017). A review on IoT healthcare monitoring applications and a vision for transforming sensor data into real-time clinical feedback. 2017 IEEE 21st International conference on computer supported cooperative work in design (CSCWD), Nichols, A. C. (2023). An Artificial Honeybee Colony Algorithm to Quantify Adaptability via Resilience for Space System Architectures. The University of Alabama. Panda, S., Mohanty, B., & Hota, P. K. J. A. s. c. (2013). Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems. 13(12), 4718-4730. Parvin, K., Lipu, M. H., Hannan, M., Abdullah, M. A., Jern, K. P., Begum, R.,…Dong, Z. Y. J. I. A. (2021). Intelligent controllers and optimization algorithms for building energy management towards achieving sustainable development: challenges and prospects. 9, 41577-41602. Patel, V., Chesmore, A., Legner, C. M., & Pandey, S. J. A. I. S. (2022). Trends in workplace wearable technologies and connected‐worker solutions for next‐generation occupational safety, health, and productivity. 4(1), 2100099. Perez-Pozuelo, I., Zhai, B., Palotti, J., Mall, R., Aupetit, M., Garcia-Gomez, J. M.,…Fernandez-Luque, L. J. N. d. m. (2020). The future of sleep health: a data-driven revolution in sleep science and medicine. 3(1), 42. Peška, L., Tashu, T. M., Horváth, T. J. S., & Computation, E. (2019). Swarm intelligence techniques in recommender systems-A review of recent research. 48, 201-219. Pham, Q.-V., Nguyen, D. C., Mirjalili, S., Hoang, D. T., Nguyen, D. N., Pathirana, P. N.,…Applications, C. (2021). Swarm intelligence for next-generation networks: Recent advances and applications. 191, 103141. Pourpanah, F., Wang, R., Lim, C. P., Wang, X.-Z., & Yazdani, D. J. A. I. R. (2023). A review of artificial fish swarm algorithms: Recent advances and applications. 56(3), 1867-1903. Purushothaman, R., Rajagopalan, S., & Dhandapani, G. J. A. S. C. (2020). Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering. 96, 106651. Qadri, S., Malik, J. A., Shah, H., & Raza, M. A. J. C. I. i. I. o. A. T. for Enhanced Security and Data Privacy in Agricultural IoT Systems. 339. Queralta, J. P., Taipalmaa, J., Pullinen, B. C., Sarker, V. K., Gia, T. N., Tenhunen, H.,…Westerlund, T. J. I. A. (2020). Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision. 8, 191617-191643. Qureshi, T., Saeed, M., Ahsan, K., Malik, A. A., Muhammad, E. S., Touheed, N. J. W. C., & Computing, M. (2022). Smart agriculture for sustainable food security using internet of things (IoT). 2022(1), 9608394. Rani, S., Mishra, R. K., Usman, M., Kataria, A., Kumar, P., Bhambri, P., & Mishra, A. K. J. I. A. (2021). Amalgamation of advanced technologies for sustainable development of smart city environment: A review. 9, 150060-150087. Rath, M., Darwish, A., Pati, B., Pattanayak, B. K., & Panigrahi, C. R. (2020). Swarm intelligence as a solution for technological problems associated with Internet of Things. In Swarm Intelligence for Resource Management in Internet of Things (pp. 21-45). Elsevier. Rathor, S. K., & Saxena, D. J. I. J. o. E. R. (2020). Energy management system for smart grid: An overview and key issues. 44(6), 4067-4109. Rehan, H. J. J. o. E., & Technology. (2023). Internet of Things (IoT) in Smart Cities: Enhancing Urban Living Through Technology. 5(1), 1− 16-11− 16. Rehman, A. U., Wadud, Z., Elavarasan, R. M., Hafeez, G., Khan, I., Shafiq, Z., & Alhelou, H. H. J. I. A. (2021). An optimal power usage scheduling in smart grid integrated with renewable energy sources for energy management. 9, 84619-84638. Rizzoli, A. E., Oliverio, F., Montemanni, R., & Gambardella, L. M. J. G. R. B. D. C. (2004). Ant Colony Optimisation for vehicle routing problems: from theory to applications. 9(1), 1-50. Roy, K., Mandal, K. K., Mandal, A. C., Patra, S. N. J. R., & Reviews, S. E. (2018). Analysis of energy management in micro grid–A hybrid BFOA and ANN approach. 82, 4296-4308. Saez, M., Maturana, F. P., Barton, K., Tilbury, D. M. J. I. T. o. A. S., & Engineering. (2018). Real-time manufacturing machine and system performance monitoring using internet of things. 15(4), 1735-1748. Saghiri, A. M. J. A. I.-b. I. o. T. S. (2022). Cognitive Internet of Things: Challenges and Solutions. 335-362. Saleem, M. U., Usman, M. R., Usman, M. A., & Politis, C. J. I. A. (2022). Design, deployment and performance evaluation of an IoT based smart energy management system for demand side management in smart grid. 10, 15261-15278. Salem, R., Salam, M. A., Abdelkader, H., & Mohamed, A. A. J. I. A. (2019). An artificial bee colony algorithm for data replication optimization in cloud environments. 8, 51841-51852. Schranz, M., Di Caro, G. A., Schmickl, T., Elmenreich, W., Arvin, F., Şekercioğlu, A.,…Computation, E. (2021). Swarm intelligence and cyber-physical systems: concepts, challenges and future trends. 60, 100762. Selvadurai, J. (2017). Distributed Computing in Internet of Things (IoT) Using Mobile Ad Hoc Network (MANET): A Swarm Intelligence Based Approach. Seyyedabbasi, A., Kiani, F. J. M., & Microsystems. (2020). MAP-ACO: An efficient protocol for multi-agent pathfinding in real-time WSN and decentralized IoT systems. 79, 103325. Sharma, H. K., Gupta, S., & Kapoor, M. (2023). Precision Farming through IoT-Enabled Smart Irrigation System for Sustainable Development. In Internet of Things (pp. 225-236). Chapman and Hall/CRC. Shehab, M., Khader, A. T., & Al-Betar, M. A. J. A. s. c. (2017). A survey on applications and variants of the cuckoo search algorithm. 61, 1041-1059. Shen, H., Zhu, Y., Zhou, X., Guo, H., & Chang, C. (2009). Bacterial foraging optimization algorithm with particle swarm optimization strategy for global numerical optimization. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation (pp. 497-504). Shi, Z., Tu, J., Zhang, Q., Liu, L., & Wei, J. (2012). A survey of swarm robotics system. Advances in Swarm Intelligence: Third International Conference, ICSI 2012, Shenzhen, China, June 17-20, 2012 Proceedings, Part I 3, Shivhare, A., Maurya, M. K., Sarif, J., & Kumar, M. J. T. J. o. S. (2022). A secret sharing-based scheme for secure and energy efficient data transfer in sensor-based IoT. 78(15), 17132-17149. Silva Filho, T. M., Pimentel, B. A., Souza, R. M., & Oliveira, A. L. J. E. S. w. A. (2015). Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. 42(17-18), 6315-6328. Singholi, A. K., Mittal, M., & Bhargava, A. J. A. i. E. T. S. P. o. T. (2020). A review on IoT-based hybrid navigation system for mid-sized autonomous vehicles. 735-744. Smith, S., Barlow, G., Xie, X.-F., & Rubinstein, Z. (2013). Smart urban signal networks: Initial application of the surtrac adaptive traffic signal control system. Proceedings of the International Conference on Automated Planning and Scheduling, Stank, T. P., Davis, B. R., & Fugate, B. S. J. J. o. b. l. (2005). A strategic framework for supply chain oriented logistics. 26(2), 27-46. Stogiannos, M., Alexandridis, A., & Sarimveis, H. J. A. S. C. (2020). An enhanced decentralized artificial immune-based strategy formulation algorithm for swarms of autonomous vehicles. 89, 106135. Sun, W., Tang, M., Zhang, L., Huo, Z., & Shu, L. J. S. (2020). A survey of using swarm intelligence algorithms in IoT. 20(5), 1420. Torchio, F. (2023). Survey on automated systems for smart warehouses Politecnico di Torino]. Uddin, M. Y., Rahman, M. U., Uddin, M. A., Mohd, S. A. S., Sohail, S., & Ahmed, A. (2022). Agricultural Based Drone. Venkata Prasad, K. J. M. T., & Applications. (2024). Revolutionary of secure lightweight energy efficient routing protocol for internet of medical things: a review. 83(13), 37247-37274. Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D., Chessa, S.,…Saffiotti, A. (2022). Internet of robotic things–converging sensing/actuating, hyperconnectivity, artificial intelligence and IoT platforms. In Cognitive hyperconnected digital transformation (pp. 97-155). River Publishers. Wang, D., Tan, D., & Liu, L. J. S. c. (2018). Particle swarm optimization algorithm: an overview. 22(2), 387-408. Wang, H., Wang, W., Zhou, X., Zhao, J., Wang, Y., Xiao, S.,…Systems, I. (2021). Artificial bee colony algorithm based on knowledge fusion. 7, 1139-1152. Wang, H., Xu, W., Zhang, Z., You, X., Zhang, C. J. I. T. o. C., & Briefs, S. I. E. (2021). An efficient stochastic convolution architecture based on fast FIR algorithm. 69(3), 984-988. Wang, J., Ju, C., Gao, Y., Sangaiah, A. K., Kim, G.-j. J. C., Materials, & Continua. (2018). A PSO based energy efficient coverage control algorithm for wireless sensor networks. 56(3). Xu, J., Gu, B., & Tian, G. J. A. I. i. A. (2022). Review of agricultural IoT technology. 6, 10-22. Yadav, R., Sreedevi, I., & Gupta, D. J. E. (2022). Bio-inspired hybrid optimization algorithms for energy efficient wireless sensor networks: a comprehensive review. 11(10), 1545. Yang, X.-S., & He, X. J. I. J. o. B.-i. c. (2013). Bat algorithm: literature review and applications. 5(3), 141-149. Zafar, U., Bayhan, S., & Sanfilippo, A. J. I. a. (2020). Home energy management system concepts, configurations, and technologies for the smart grid. 8, 119271-119286. Zamanifar, A. J. I. i. h., & living, A. A. (2021). Remote patient monitoring: health status detection and prediction in IoT-based health care. 89-102. Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., Fortino, G. J. J. o. P., & Computing, D. (2018). Swarm intelligence-based algorithms within IoT-based systems: A review. 122, 173-187. Zhang, W., Guhathakurta, S., Fang, J., Zhang, G. J. S. c., & society. (2015). Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach. 19, 34-45. Zhang, W., Wang, L. J. A. i. U. R., & Design, S. C. (2024). Advancing Agricultural Practices through IoT-Driven Crop Field Monitoring and Automated Irrigation Systems for Seamless Farm Management. 16(02), 1-17. Zhang, Z., Long, K., Wang, J., Dressler, F. J. I. C. S., & Tutorials. (2013). On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. 16(1), 513-537.