Share:


OPTIMIZATION POTENTIAL USING AI AND METAVERSE IN SUPPLY CHAIN MANAGEMENT: A FORWARD-LOOKING PERSPECTIVE

    Deepti Patnaik, Bipin Bihari Pradhan, Tushar Ranjan Barik

Abstract

The integration of artificial intelligence (AI) and the emerging metaverse technologies in supply chain management (SCM) presents an exciting opportunity for transformative innovation. This paper investigates the potential of these technologies to revolutionize traditional SCM practices. It explores how AI and the metaverse can elevate efficiency, transparency, and sustainability within supply chains while addressing the challenges and ethical considerations they bring. This paper outlines strategic opportunities and ethical implications related to the adoption of AI and the metaverse in SCM. Furthermore, the integration of blockchain technology in the metaverse enhances transparency and security. Together, these technologies enable real-time resource optimization, risk analysis, personalized customer experiences, sustainability practices, and continuous learning, fostering a responsive and efficient supply chain ecosystem.

Keyword : Supply chain management, Artificial Intelligence, metaverse, block chain, predictive analysis

Published in Issue
June 14, 2024
Abstract Views
02
PDF Downloads
03
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References


1. Accenture. (2020). Future Systems: A Journey to the New Supply Chain. Retrieved from https://www.accenture.com/_acnmedia/PDF-122/Accenture-Supply-Chain-Digital-Survey-Global-2020.pdf 2. Ahmed, Z., Liu, J., & Malik, A. (2021). Artificial intelligence (AI) and environmental sustainability: A review. Science of the Total Environment, 761, 143202. 3. Böhm, M., Leimeister, J. M., & Möslein, K. M. (2021). The metaverse: Implications for supply chain management. Journal of Business Logistics, 42(3), 237-247. 4. Böhm, M., Leimeister, J. M., & Möslein, K. M. (2021). The metaverse: Implications for supply chain management. Journal of Business Logistics, 42(3), 237-247. 5. Böhm, M., Leimeister, J. M., & Möslein, K. M. (2021). The metaverse: Implications for supply chain management. Journal of Business Logistics, 42(3), 237-247. 6. Böhm, M., Leimeister, J. M., & Möslein, K. M. (2021). The metaverse: Implications for supply chain management. Journal of Business Logistics, 42(3), 237-247. 7. CDP. (2021). A Decade of Disclosure: Assessing Corporate Sustainability Progress and Transparency. Retrieved from https://www.cdp.net/en/research/global-reports/a-decade-of-disclosure 8. Chen, Y., Lin, Y., & Wang, Y. (2021). Digital twin technology for supply chain: A systematic literature review and research agenda. International Journal of Production Research, 59(1), 27-52. 9. Chen, Y., Lin, Y., & Wang, Y. (2021). Digital twin technology for supply chain: A systematic literature review and research agenda. International Journal of Production Research, 59(1), 27-52. 10. Chen, Y., Lin, Y., & Wang, Y. (2021). Digital twin technology for supply chain: A systematic literature review and research agenda. International Journal of Production Research, 59(1), 27-52. 11. Chen, Y., Lin, Y., & Wang, Y. (2021). Digital twin technology for supply chain: A systematic literature review and research agenda. International Journal of Production Research, 59(1), 27-52. 12. Chen, Y., Lin, Y., & Wang, Y. (2021). Digital twin technology for supply chain: A systematic literature review and research agenda. International Journal of Production Research, 59(1), 27-52. 13. Christopher, M. (2016). Logistics and supply chain management. Pearson UK. 14. Christopher, M. (2016). Logistics and supply chain management. Pearson UK. 15. Christopher, M. (2016). Logistics and supply chain management. Pearson UK. 16. Davies, N., Meyer, D., & Bräuer, S. (2023). Navigating the metaverse: Opportunities and challenges for supply chain management. Journal of Operations Management, 79, 123-135. 17. Deloitte. (2020). Robotics Process Automation (RPA) in Supply Chain Management. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/de/Documents/process-automation/RPA%20in%20SCM-FT.pdf 18. Deloitte. (2021). 2021 Global Marketing Trends: Find Your Focus. Retrieved from https://www2.deloitte.com/us/en/insights/industry/retail-distribution/global-marketing-trends/2021.html 19. European Commission. (2021). Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Retrieved from https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682 20. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Krammer, R. (2021). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 31(1), 1-29. 21. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Krammer, R. (2021). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 31(1), 1-29. 22. Gartner. (2020). Gartner Forecasts Worldwide Supply Chain Analytics Revenue to Reach $14 Billion in 2023. Retrieved from https://www.gartner.com/en/newsroom/press-releases/2020-06-17-gartner-forecasts-worldwide-supply-chain-analytics-revenue-to-reach-14-billion-in-2023 23. Gnanasundaram, S., Choudhary, A., & Rao, S. S. (2022). Virtual Reality in Supply Chain Management: Challenges and Opportunities. Journal of Manufacturing Science and Engineering, 144(2), 021008. 24. Hwang, S. H., Lee, J. H., & Park, J. H. (2023). AI convergence in the metaverse for supply chain management. International Journal of Production Research, 61(2), 414-430. 25. IBM. (2020). Blockchain in Supply Chain Management: Enabling Transparency and Traceability. Retrieved from https://www.ibm.com/downloads/cas/YWLNKL9V 26. Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 31(10), 843-856. 27. Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 31(10), 843-856. 28. Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 31(10), 843-856. 29. Jia, F., Yan, Y., & Wang, Y. (2023). An intelligent demand forecasting model based on machine learning and big data analysis. Journal of Business Research, 163, 417-426. 30. Jiang, Y., Cai, W., & Chen, H. (2021). Blockchain-enabled supply chain digital twins for resilient supply chain management. Computers & Industrial Engineering, 151, 107041. 31. Jiang, Y., Cai, W., & Chen, H. (2021). Blockchain-enabled supply chain digital twins for resilient supply chain management. Computers & Industrial Engineering, 151, 107041. 32. Kleinberg, J., Ludwig, J., Mullainathan, S., & Sunstein, C. R. (2018). Discrimination in the Age of Algorithms. Journal of Legal Analysis, 10(1), 113-174. 33. Kumar, P., & Prakash, A. (2020). Artificial Intelligence and the Digital Divide: An Assessment. In Handbook of Research on Artificial Intelligence Applications in the Supply Chain (pp. 1-21). IGI Global. 34. Lee, H. L., & Lee, K. Y. (2020). Integrating technologies into supply chain management. Journal of Business Logistics, 41(2), 97-105. 35. Lee, H. L., Padmanabhan, V., & Whang, S. (2017). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546-558. 36. Lee, H. L., Padmanabhan, V., & Whang, S. (2017). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546-558. 37. Li, S., O'Brien, C., & Zhang, Y. (2018). Big data in operations and supply chain management: Introduction to the special issue. Production and Operations Management, 27(10), 1773-1778. 38. Li, S., O'Brien, C., & Zhang, Y. (2018). Big data in operations and supply chain management: Introduction to the special issue. Production and Operations Management, 27(10), 1773-1778. 39. McKinsey & Company. (2020). Supply Chain 4.0: Building the Digital Supply Chain. Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/supply-chain-40-building-the-digital-supply-chain 40. McKinsey & Company. (2021). How IoT Can Improve Supply Chain Operations. Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/how-iot-can-improve-supply-chain-operations 41. Nair, S. K. (2021). Blockchain technology: Security risks and ethical issues. Journal of Contemporary Issues in Business and Government, 27(2), 2052-2060. 42. Smith, J. (2020). The Impact of Artificial Intelligence on Supply Chain Management. Retrieved from https://www.supplychain247.com/article/the_impact_of_artificial_intelligence_on_supply_chain_management 43. Sodhi, M. S., Tang, C. S., & Yu, Y. (2023). Information Distortion in a Supply Chain: The Bullwhip Effect. Management Science, 43(4), 546-558. 44. Tandon, S., Chopra, S., & Mehta, V. (2022). The metaverse: A game changer for supply chain management. International Journal of Production Economics, 239, 108079. 45. Wang, L., & Zhang, H. (2019). The evolution and prospects of digital twins for intelligent manufacturing. Journal of Manufacturing Systems, 51, 35-42. 46. Wang, L., & Zhang, H. (2019). The evolution and prospects of digital twins for intelligent manufacturing. Journal of Manufacturing Systems, 51, 35-42. 47. Wang, L., & Zhang, H. (2019). The evolution and prospects of digital twins for intelligent manufacturing. Journal of Manufacturing Systems, 51, 35-42. 48. World Economic Forum. (2021). The Future of Jobs Report 2020. Retrieved from http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf 49. World Trade Organization. (2020). World Trade Statistical Review. Retrieved from https://www.wto.org/english/res_e/statis_e/wts2020_e/wts2020_e.pdf 50. Zhang, X., Chen, H., & Chen, Y. (2020). Big data analytics for demand forecast in supply chain management. IEEE Transactions on Industrial Informatics, 16(6), 3990-3998. 51. Zhang, X., Chen, H., & Chen, Y. (2020). Big data analytics for demand forecast in supply chain management. IEEE Transactions on Industrial Informatics, 16(6), 3990-3998. 52. Zhang, X., Chen, H., & Chen, Y. (2020). Big data analytics for demand forecast in supply chain management. IEEE Transactions on Industrial Informatics, 16(6), 3990-3998.